
TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

 

17 SEP 2020 
Alert Number 

ME-000134-MW 
 

*Note: This information is being 
provided by the FBI to assist 

cyber security specialists protect 
against the persistent malicious 
actions of cyber criminals. The 

information is provided without 
any guaranty or warranty and is 
for use at the sole discretion of 

the recipients. 

 

The following information is being provided by the FBI, with no guarantees or 
warranties, for potential use at the sole discretion of recipients in order to 
protect against cyber threats. This data is provided in order to help cyber 
security professionals and system administrators to guard against the 
persistent malicious actions of cyber criminals. This FLASH was coordinated 
with DHS/CISA and US Treasury. 
 

This FLASH has been released TLP:WHITE: Subject to standard copyright rules, 
TLP:WHITE information may be distributed without restriction. 

 

Indicators of Compromise Associated with Rana 

Intelligence Computing, also known as Advanced 

Persistent Threat 39, Chafer, Cadelspy, Remexi, and ITG07 

Summary 
 
Rana Intelligence Computing Company, also known as Rana Corp, is a Ministry 
of Intelligence and Security (MOIS) front company in Tehran, Iran that 
conducts malicious cyber activity. It is known in the public domain as Advanced 
Persistent Threat (APT) 39, Chafer, Cadelspy, Remexi, and ITG07.  
 

Rana’s cyber targeting has been both global in scale and internal to Iran, 
including hundreds of individuals and entities from more than 30 different 
countries across Asia, Africa, Europe, and North America. It has targeted more 
than 15 US companies, primarily in the travel industry, and used this access to 
track the movements of individuals whom the MOIS considers a threat. It has 
also targeted foreign citizens, foreign governments, and foreign institutions 
and companies primarily in the travel, hospitality, academic, and 
telecommunications industries. 
 
Within Iran, Rana has used malicious intrusion tools to target and monitor 
Iranian citizens and dissidents on behalf of the MOIS. These include Iranian 
journalists, former government employees, environmentalists, refugees, 
university students and faculty, and employees at international 
nongovernmental organizations. Rana has targeted Iranian private sector 
companies and academic institutions, including Persian language and cultural 
centers inside and outside Iran.  



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

In conjunction with Department of Treasury Office of Foreign Assets Control sanctions levied against 
individuals and entities associated with Rana Corp, the FBI is providing information on numerous malware 
variants and indicators of compromise (IOCs) associated with Rana to assist organizations and individuals in 
determining whether they may have been targeted. Representative samples of the malware have also been 
uploaded to Virus Total for individual analysis. 
 

Technical Details 
 
The FBI identified numerous malware variants used by Rana, derived corresponding IOC signatures, and 
developed YARA rules to help entities and individuals identify the malware on their networks and systems. 
Malware samples uploaded to Virus Total for individual analysis are also included below. 
 

Visual Basic Script (VBS) Malware 

The FBI identified several malicious VBS scripts used by Rana. The VBS malware was embedded in Microsoft 
Office documents and sent to victims via spear phishing or other social engineering techniques. Once 
opened, the Office document deobfuscated and broke out two scripts that perform the following actions: 
   

1. Sets upload/download paths to: 
a. %userprofile%\appdata\local\Microsoft\Feed\dn 
b. %userprofile%\appdata\local\Microsoft\Feed\up 

2. Deobfuscates and creates files named: 
a. %userprofile%\appdata\local\Microsoft\Feed\[script name].vbs  
b. %userprofile%\appdata\local\Microsoft\Feed\tm.ps1 

3. Runs Schedule Task Command to run [script name].vbs file with unique/obscure name every 
2 minutes. The APT names the scheduled tasks as follows: 

a. UpdatMachine and UpdateMachineG [The file is likely named a letter followed by 
numbers, for example: K1234.vbs.] 

4. Runs PowerShell, normally under a script named tm.ps1 
5. The VBS file reaches out to <actor IP or URL>:port/update.php?req=<victim 

identifier>. This request is followed by additional upload or download commands of the form 
&m=d, &m=u, or&m=b. We assess the actors use this process to upload/download victim data 
and/or additional malware. We assess the d stands for download, the u stands for upload, and the b 
represents a command to download as a .bat file. 

Both [script name].vbs and tm.ps1 work together to upload victim files and execute commands via 
cmd.exe on a victim machine. PowerShell then downloads regular or batch files from actor controlled IP 
addresses or domains.  



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

VBS Indicators of Compromise 
The FBI derived the below signatures to detect the VBS malware's presence:  

 Presence of files located in the following path:  
o %userprofile%\appdata\local\Microsoft\Feed\dn 
o %userprofile%\appdata\local\Microsoft\Feed\up 

 Presence of text files starting with a letter name followed by numbers, example K1234.vbs, that had 
actor infrastructure embedded. 

 Unusual scheduled tasks that run every 2 minutes and run the .vbs script. The following scheduled 

task names: UpdatMachine and UpdateMachineG. 

 The VBS malware traffic samples included: 

o Request: TCP and dport 80 and contains /update.php?req= 
o Response: TCP and sport 80 and begins with GET /update.php?req=(.*)&m=[bdu] 

HTTP/1.1 
o Request : TCP and dport 80 and contains update.php?req=.*&m=d 

o Response: MZ.* 
 
VBS YARA Rules 
The FBI developed the following YARA rule for detection of VBS malware:  
 
rule vbs_malware {  

 
strings: 
$a = "$powIndex=.* ==> .* reminded" 
$b = "then .* throw exception" 
$c = "then no require padding" 
$d = "must be extend to" 
$e = "need add padding to reminded" 
$f = "& SERVER & \"&m=b','\"" 
$g = "$sendData = \"(rd|bd)_\".*-minimum 1 -maximum 10000.*" 
$h = "$sendData = \"(rne|bne)_\".*Get-Random.*" 
$i = "$sendData = \"(rne|bne|rd|bd)_\".*-minimum 1 -maximum 10001.*" 
condition: 
2 of them 
 

} 

  



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

AutoIt Malware  
The FBI identified several malicious AutoIt malware scripts used by Rana. The FBI assesses the AutoIt 
malware was embedded in Microsoft Office documents or malicious links, and sent to victims via spear 
phishing or other social engineering techniques. Analysis of the AutoIt malware revealed it was technically 
very similar in functionality to the above-mentioned VBS malware.  
Analysis of the AutoIt malware code revealed the following: 

1. When the malware is run, an AutoIt script named App.au3 executes. This script contains a 
hardcoded domain that will act as a command and control (C2). 

2. The script performs a DNS flush and creates two directories: 
a. <USER_DIR>\appdata\microsoft\Taskbar\dn  
b. <USER_DIR>\appdata\microsoft\Taskbar\up 

3. The script looks for the values UMe (called "method"), UN (called "rndname"), UT (called 
"lastMethodFinderTime") from the registry key: 

a. HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion 

4. The script will write to the registry key: 
a. HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion, and 

the following values:  
i. UMe : "0" or a method name 

ii. UN : size 4 random string 
iii. UT : a timestamp 

5. This method, which is used for C2, was determined based on one of three methods described below: 
a. Method 1: Selected in the case that the IP returned for the hardcoded server address begins 

with 65.. Execute PowerShell command to run dnip.ps1 file. 
b. Method 2: Selected in the case that an nslookup of the hardcoded server name matches a 

specific regular expression in the code. Execute PowerShell command to run dntx.ps1 file. 
c. Method 3: Selected in the case that a successful GET request (results in code 200) occurs to 

http://<server address>/update.php. Execute PowerShell commands very 
similar to those found in the VBS malware, specifically going to the update.php?m=b and 

update.php?m=d for uploading/downloading commands and files. 
 
 

AutoIt Indicators of Compromise 
 

The FBI derived the below signatures to detect the AutoIT malware's presence: 

 Presence of files located in the following path:  
o %userprofile%\appdata\local\Microsoft\Feed\dn 

o %userprofile%\appdata\local\Microsoft\Feed\up 

o %userprofile%\appdata\local\Microsoft\Feed\te 

 Modifications to registry key: 
o HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

 C2 traffic of the format: 
o http://<server>/update.php?req=<victim identifier>&m=b 

o http://<server>/update.php?req=<victim identifier>&m=d 
o http://<server>/update.php?req=<victim identifier>&m=u 
o http://<server>/update.php?req=<victim identifier>&m=d&b3=1 
o http://<server>/update.php?req=<victim identifier>&m=b&b3=1 

o http://<server>/update.php?req=<victim identifier>&m=u&b3=1 

 

AutoIt YARA Rules 
 
The FBI developed the following YARA rules to detect the AutoIt malware's presence:  
 
rule AutoIt_Malware_1 { 
strings: 
$s1 = "\\appdata\\local\\microsoft\\Taskbar" 
$comm2 = "&m=u" 
$comm1 = "&m=d" 
$comm3 = "&m=b" 
$old1 = "dnip.p" 
$old2 = "dntx.p" 
$new1 = "dntxu" 
$new2 = "dnipu" 
$regs1 = "HKEY_CURRENT_USER\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion" 
$regs2 = "UMe" 
$regs3 = "UN" 
$regs4 = "UT" 
 

condition: 
all of ($comm*) and all of ($regs*) and (all of ($old*) or ($new1 and $new2)) 

and $s1 
} 

 
rule AutoIt_Malware_2 { 

strings: 

$dns1 = "join ((65..90) + (48..57) + (97..122)" 

$dns2 = "upload data host name:" 

$dns3 = "get control value and batch & normal file existence" 

$dns4 = "check if hostlen is Ok ?" 

$dns5 = "\\dn" 

$dns6 = "\\up" 

$dns7 = "\\te" 

 

condition: 

4 of them 

} 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

 
rule AutoIt_Malware_3 { 

strings: 

$s1 = "%dntx.ps1%" 

$s2 = "existence regular file" 

$url3 = "rne_" 

$url4 = "rd_" 

$url5 = "bne_" 

$url6 = "bd_" 

$url7 = "u_" 

$s3 = "Software\\Microsoft\\Windows\\CurrentVersion).UN" 

 

condition: 

(3 of ($url*)) and 2 of ($s*) 

} 

 

rule AutoIt_Malware_4 { 

strings: 

$s1 = "%dntxu.ps1%" 

$s2 = "\\dnr" 

$s3 = "Software\\Microsoft\\Windows\\CurrentVersion).UN" 

$s4 = "u_" 

$s5 = "upload folder content" 

 

condition: 

all of them / 

} 

 
 
 

BITS 1.0 Malware 

This malware, identified as BITS 1.0, appeared to work in conjunction with the above VBS and AutoIt 
malware. The VBS and/or AutoIt malware pulled down the BITS 1.0 malware from actor controlled 
infrastructure for further victimization. In general, the BITS 1.0 malware contained similar functionality, 
although each variant was slightly different.  
Analysis of the BITS 1.0 malware revealed it conducted the following: 

1. Installed a dropper that contained two Microsoft CAB files. Observed droppers were named 

Bird.exe, Reg.exe, or natgeo-desktop.exe. 
2. CAB file 1 was empty, and observed as being named Empty.exe.  
3. CAB file 2 contained two executables, one configuration file, and other files and folders detailed 

below. 
a. Executable 1: Entitled Svc.exe or events.exe. This executable accepts multiple 

commands to include the following: search, update, upload, shell execute, install, uninstall, 
and more. 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

b. Executable 2: Entitled Splitter.exe. This executable contains the following functions: 
mouse capture, screen capture, key logger, and IP configuration. 

c. Configuration file: Located in CAB file 2, is obfuscated using a simple XOR cipher, and contains 
a ZipPass key. Each target may be assigned a unique cipher and key. 

d. Other files: Log.txt, task.xml, upped.txt. Analysis indicated thatlog.txt logs malware functions, 
task.xml triggers events.exe to keep running, XPTask.xml runs the scheduled tasks, and 
upped.txt contains obfuscated logging.  

e. Other folders: Cache000, Cache001, Cache002, Cache003, Cache004, Cache005 
4. The two executables worked together to aggregate victim data, encrypt it using the XOR key as a 

seed, and zip the data using the ZipPass key to password protect the files.  
5. The victim data was then transmitted utilizing the Microsoft BITS protocol to actor controlled 

infrastructure. Executable 1 used a BITS_POST to send victim data to the actor controlled 
infrastructure. The BITS_POST path and query string has the following format: /asp.asp?ui=[User ID, 
Persian Calendar Date, MAC Address, Computer Name]. The traffic occurred over port 80 http traffic. 

BITS 1.0 Malware Indicators of Compromise 

The FBI derived the below signatures to detect the BITS 1.0 malware's presence: 

 DNS resolution to obscure IP addresses, specifically 65.65.65.X, 76.76.76.76, and 61.61.X.X. 

 Snort rule that alerts on TCP packets to and from any IP/any port to any IP/port on port 80 that 

contains BITS: alert tcp any any -> any (sid: 1002351; rev:1; msg."BITS 
content"; content:"BITS") 

 BITS 1.0 malware traffic samples: 
o Requests TCP and dport80 and contains the string asp.asp\?ui= 

o Requests TCP and sport 80 and stream is NOK 
 

BITS 1.0 Malware YARA Rules 
 
The FBI developed the following YARA rules to detect the BITS 1.0 malware's presence: 
 
rule BITS_1_0_1 {  
strings: 
$string1 = "putCommandsInReg" 
$string2 = "diskFullityCheckRatio:" wide  
$string3 = "ipc%s/a%s" 
$string4 = "tuplog.txt" 
$string5 = "Splitter.exe" wide  
$string6 = "KLSource" 
$string7 = "classour" 
$string8 = "zXapr" 
$string9 = "XPTask.vbs" wide  



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

 

condition: 
3 of them 
} 
 

rule BITS_1_0_2 { 
strings: 
$a = "Error in LOID Type" wide ascii 
$b = "LOID is no-space and no-empty String" wide ascii  
$c = "Register By LOID" wide ascii  
$d = "Please Input Your LOID" wide ascii 
$e = "Please Select a LOID:" wide ascii 
 

condition: 
3 of them 
} 
 

rule BITS_1_0_3 { 

strings: 

$a = "expand.exe" wide ascii nocase 

$b = "EmptyProject.exe" wide ascii nocase 

$c = "events.exe" wide ascii nocase 

$d = "SExe.cab" wide ascii nocase 

$e = "HCK.cab" wide ascii nocase 

 
condition: 

3 of them 

} 

 

rule BITS_1_0_4 { 

strings: 

$a = "HCK.cab" wide ascii nocase 

$b = "SExe.cab" wide ascii nocase 

 
condition: 

1 of them 

} 

 

rule BITS_1_0_5 { 

strings: 

$a = "nyKTudhkoIfxohEisnZeVaRuY" wide ascii nocase 

$b = "readUploadFilesLineByLineAndUpload" wide ascii 

$c = "abe2869f-9b47-4cd9-a358-c22904dba7f7" wide ascii  

$d = "Software\\Microsoft\\Internet Explorer\\IntelliForms\\Storage2" wide 

ascii 

$e = "D:\\Release\\KLSource\\thread_command.c" wide ascii 

$f = "YmaxUpFileSizeKByte:" wide ascii 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

$g = "readUploadFilesLineByLineAndUpload=>" wide ascii  

 
condition: 

3 of them 

} 

 

rule BITS_1_0_6 { 

strings: 

$a = "config.ini" wide  

$b = "YZipPass:" wide  

$c = "captureScreenQC:" wide 

$d = "captureActiveQC:" wide 

$e = "maxUpFileSizeKByte:" wide 

$f = "image/jpeg" wide  

$g = "S.zip" wide 

$h = "upped.txt" wide  
 

condition: 

3 of them 

} 

 

rule BITS_1_0_7 { 

strings: 

$a = "const KSname = \"taskmgr.exe\"" 

$b = "const VBSName = \"XPTask.vbs\"" 

$c = "oShell.AppActivate \"schtasks\"" 

$d = "oshell.sendkeys \"~\"" 

$e = "\"\\system32\\se-SE\\\"" 
 

condition: 

3 of them 

} 

 

rule BITS_1_0_8 { 
strings: 
$a = "/IM bitsadmin.exe /F" 
$b = "googleyou" 
$c = "/TRANSFER HelpCenterDownload /DOWNLOAD" wide 
$d = "downCommand" wide  
$e = "/PRIORITY normal" wide  
$f = "Cache00" 
 

condition: 
4 of them 
} 

 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

BITS 2.0 Malware 
The FBI identified a separate variant of the "BITS_1.0" malware referred to as "BITS 2.0."  This malware used 
similar communication channels and techniques as BITS 1.0 detailed previously, however with significant 
changes in technical details. 
The BITS 2.0 malware does the following: 

1. BITS 2.0 is a self-extracting executable file containing an image, an icon, a VBS script, and an 
executable. In one instance, this self-extracting executable file contained two additional files named 
run.xml and events.log. The following file names were observed:  

a. Self extracting executable named: final1.exe 

b. Image name: Chrysanthemum.jpg (This file is a legitimate JPG.) 

c. VBS script named: events.vbs 

d. An executable named: events.exe 
2. Events.vbs: Creates a scheduled task for persistence and execution. Two scheduled task names have 

been observed: "Update Windows" (sic) and "Update Windows_<username>". The FBI Observed 
events.vbs installed in the following target directory: 

a. C:\Users\user\AppData\Local\Microsoft\Events\[events.vbs]. 
3. Events.exe: Analysis of this file determined it to contain similar functionality to the events.exe 

detailed in the BITS 1.0 analysis, however it is not the same file. This events.exe has the ability to 
execute the following commands on the victim machine: Upload and download files, search for a file 
to upload, and use cmd.exe to execute command line operations on the target machine. Events.exe 
also works to automatically obtain the following target information: screenshots, clipboard data, and 
keylogger information. Events.exe listened for incoming commands, turns off the legitimate 
BITSADMIN process, and bundles the victim data into an encrypted .bak.zak file for exfiltration. Lastly, 
events.exe exfiltrated the encrypted victim files to the C2. [*Analysis revealed events.exe was 
functionally equivalent to a combination of the events.exe and splittler.exe detailed in BITS 1.0 
analysis.] 

4. Target files to C2: Once compromised, the target sends the zipped and encrypted .bak .zak files to the 
following location on the C2 server:  

a. http://[C2 IP].test.asp. 
5. Target beacons to C2: Once compromised, the target sends beacons to the following location on the 

C2 server:  
a. http://[C2 IP]/checkupdate.asp?uname=[target username]&pid=[target operation name].  

 

BITS 2.0 Indicators of Compromise  
The FBI derived the below signatures to detect the BITS 2.0 malware's presence:  

 Egresses data to the 

following:<url>/test.asp?name=<opname_from_config>_<computer_name>_<mac_
address>_<filename>.bak.zak&q=<zipfile data> 

 Traffic used: bitsadmin.exe 5 

 Does a GET request to: <url>/checkupdate.asp?uname=<username>&pid=<opname> 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

 Modifies registry key: 
o Software\Microsoft\Internet Explorer\Main 

 Subkey: DisableFirstRunCustomize set to 1 

 Creates a folder: C:\Users\<username>\AppData\Local\Microsoft\Events in which 

Events.vbs is placed 

 BITS communications: 
o exe /TRANSFER SecurityCenterUpdate /DOWNLOAD /PRIORITY normal 

<url><local filepath> 

o exe /TRANSFER HelpCenterUpload /UPLOAD /PRIORITY normal 

<url><local filepath> 

o URL: <url>/<opname>_<computer name>_<mac address>_<filename> 

 BITS 2.0 malware traffic samples included: 
o Request : TCP and dport 80 and contains /test.asp 
o Response: TCP and sport 80 and stream begins with name=.*\.*bak\.zak&q= 

o Response: TCP and stream contains Rar!.*\.bak\.zak\x0A 
 
BITS 2.0 YARA Rules 
 

The FBI developed the following YARA rules to detect the BITS 2.0 malware's presence: 
 
rule BITS_2_0_1 { 

strings: 

$a = "checkupdate.asp" wide ascii 

$b = "classour" wide ascii 

$c = "OKKK" wide ascii 

$d = "%s%s.zak" wide ascii 

$e = ".rmrm.dat" wide ascii 

$f = ".cmcm.dst" wide ascii 

$g = "--||))((++__::" wide ascii 

 

condition: 

4 of them 

} 

 

rule BITS_2_0_2 { 

strings: 

$a = "ID:" wide ascii 

$b = "ECODE:" wide ascii 

$c = "RTIME:" wide ascii 

$d = "UNAME:" wide ascii 

$e = "MAC:" wide ascii 

$f = "RESP:" wide ascii 

 

condition: 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

all of them 

} 

 

 
 
Firefox Malware Overview 
 
The FBI identified malware that was masquerading as legitimate Mozilla Firefox. The malware was entitled 
1.exe, and contained the following files and functionalities: 
 

1. 7z.dll: 
a. MD5 3153abb3ee1acea396b0f7b77c0162c9 
b. Analysis indicates this was a legitimate copy of 7zip  

2. autoGetKbd.dll: 
a. MD5 b15196f34a69e6579532c69fefad7ac6 
b. Analysis indicates this was a key logger of unknown origin.  

3. autoScreenShot.dll: 
a. MD5 9e98ecf93ca86751dbdb7049f6d24e9b 
b. Analysis indicates this was a screenshot utility of unknown origin. 

4. CrachReport.exe: 
a. MD5 fc105956b5b2d33411b2c0e362abb6b3 
b. Analysis indicates this conducts file compression.  

5. fort.vbs: 
a. MD5 e169c4d3430c8342d809055dc5f3373e 
b. Analysis indicates this created a shell command to run the SafeBrowser.exe binary.  

6. Logging.dll: 
a. MD5 e998fa518523ccc092c4167718b069cb 
b. Analysis indicated that upon running, screenshots are created and dumped to 

C:\Users\user\AppData\Local\MozillaFirefox\Cache. These are encrypted 
with a password. Keylogs current window information are created and dumped to 
C:\Users\user\AppData\Local\MozillaFirefox\Extensions. In the folder 
C:\Users\user\AppData\Local\MozillaFirefox\Config 

c. Two files are created: 1.txt and 2.txt. File 1.txt contains what appears to be a formatted 

date string: 2018_6_12_11_31_32. File 2.txt contains a string of numbers: 
5759153778925404000.  

7. MozillaFirefox.exe: 
a. MD5 3f3f39bacfe115df5b55c9ab06b93aeb 
b. Analysis indicated this executable pretends to be legitimate Firefox, but is not. Does file egress 

for some of the paths listed above. 
8. MozillaSciencedent.vbs: 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

a. MD5 d661d2dd1c28efd4b4f7c9c70f763354 
b. Analysis indicated this created a shell command to run MozillaFirefox.exe binary.  

9. MozillaUpdate.exe: 
a. MD5 54c166c313c684eaa54c0c861cc34987 
b. Analysis indicated this was similar to MozillaFirefox.exe and logging.dll.  

10. SafeBrowser.exe: 
a. MD5 dbc67d46cb7b6aa7406c979b248421c4 
b. Analysis indicated this created a scheduled task to run a task named Mozillafox which appears 

to be MozillaFirefox.exe. 
 

Mozilla Firefox Indicators of Compromise 
 
The FBI derived the below signatures to detect the Mozilla Firefox malware's presence: 

 Two files created in C:\Users\user\AppData\Local\MozillaFirefox\Config 
o txt: Contains formatted date string 
o txt: Contains randomly generated numerical string 

 C:\Users\user\AppData\Local\MozillaFirefox\Cache (contains screenshot data) 

 C:\Users\user\AppData\Local\MozillaFirefox\Extensions (contains keylogs) 

 FTP traffic that matches the following: u_ex<number>-<numerical string>-
<year>_<month>_<day>_<hour>_<minute>_<second>.gzn 

 
Mozilla Firefox YARA Rules 
 
The FBI developed the below YARA rules to detect the Mozilla Firefox malware’s presence: 
 

rule Firefox_1 {  

strings: 

$string1 = "Mozilla\\fort.vbs" wide ascii nocase 

$string2 = "Main Returned." wide ascii nocase 

$string3 = "\\Mozilla\\ReadMe.txt" wide ascii nocase 

$string4 = "Mozillafox" wide ascii nocase 

$string5 = "MozillaSciencedent.vbs" wide ascii nocase 

$string6 = "MozillaFirefox.exe" wide ascii nocase 

$string7 = "Hello World" wide ascii nocase 

$a9 = "C:\\Users\\RS01212M\\AppData\\Roaming\\generator\\proj1-

FTPCenter\\FTPCenter\\Release\\Task.pdb" wide ascii nocase 

 

condition: 

4 of them 

} 

 

rule Firefox_2 { 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

strings: 

$a1 = "autoGetKbd.dll" wide ascii nocase 

$a2 = "autoScreenShot.dll" wide ascii nocase 

$a3 = "ConfigPath" wide ascii nocase 

$a4 = "savingToOldFolder" wide ascii nocase 

$a5 = "Logging.dll" wide ascii nocase 

$a6 = "taskmgr.exe" wide ascii nocase 

$a7 = 

"C:\\Users\\RS01212M\\AppData\\Roaming\\generator\\Proj1\\autoGetKbd\\Release\\

MyApplication.pdb" wide ascii nocase 

 

condition: 

4 of them 

} 

 

 

rule Firefox_3 { 

strings: 

$a1 = "task notopen" wide ascii nocase 

$a2 = "tske open" wide ascii nocase 

$a3 = "\\MozillaFirefox\\SystemExtensionsDev\\" wide ascii nocase 

$a4 = "MozillaUpdate.exe" wide ascii nocase 

$a5 = "147!@#Asad" wide ascii nocase 

$a6 = "Send!" wide ascii nocase 

$a7 = "MozillaFirefox\\Cache\\" wide ascii nocase 

$a8 = "ftp" wide ascii nocase 

$a9 = "C:\\Users\\RS01212M\\AppData\\Roaming\\generator\\proj1-

FTPCenter\\FTPCenter\\Release\\FTPCenter.pdb" wide ascii nocase 

 

condition: 

4 of them 

} 

 

rule Firefox_4 { 

strings: 

$a1 = "1.txt" wide ascii nocase 

$a2 = "2.txt" wide ascii nocase 

$a3 = "CrachReport.exe" wide ascii nocase 

$a4 = "MuttiSSDERF23" wide ascii nocase 

$a5 = "\\MozillaFirefox\\SystemExtensionsDev\\" wide ascii nocase 

$a6 = "MozillaFirefox\\Config" wide ascii nocase 

$a7 = "\\MozillaFirefox\\SystemExtensionsDev\\u_ex" wide ascii nocase 

$a8 = "Logging.dll" wide ascii nocase 

$a9 = 

"C:\\Users\\RS01212M\\AppData\\Roaming\\generator\\Proj1\\autoGetKbd\\Release\\

Logging.pdb" wide ascii nocase 

 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

condition: 

4 of them 

} 

 

rule Firefox_5 { 

strings: 

$a1 = "CrachReport.exe" wide ascii nocase 

$a2 = "u_ex" wide ascii nocase 

$a3 = "Hello World" wide ascii nocase 

$a4 = ".gzn" wide ascii nocase 

$a5 = "--PICE--" wide ascii nocase 

$a6 = "--PICS--" wide ascii nocase 

$a7 = "\\MozillaFirefox\\Cache" wide ascii nocase 

$a9 = "Logging.dll" wide ascii nocase 

$a10 = 

"C:\\Users\\RS01212M\\AppData\\Roaming\\generator\\Proj1\\autoGetKbd\\Release\\

autoScreenShot.pdb" wide ascii nocase 

 

condition: 

4 of them 

} 

 

rule Firefox_6 { 

strings: 

$string = "RS01212M" wide ascii nocase 

 

condition: 

all of them 

} 

 

 

Python-Based Malware Overview/Analysis 
 
The FBI identified a Python-based malware used by Rana. The Python-based malware was normally 

contained in a .rar file, which also contained a script named ma.py. When run, the file conducted a HTTP 
GET request to a command and control server conforming to [Actor IP]/service.html. This GET 
request then downloaded additional malicious files to the victim machine. The file directed additional files 
from the command and control server to be written out as: 
C:\\Windows\\Temp\\ImageVeiwer.exe. The file also directed ImageVeiwer.exe to be run at 
system reboot.    
The file ma.py contained a comment in the code that stated "# BTW This is working only on windows." 
Malware traffic signatures:  

TCP and dport=80 and stream starts with err0701 
 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

 
Python-Based Malware YARA Rules 
 
The FBI developed the following YARA rules to detect the Python-based malware's presence: 
 
rule Python_1 { 

strings: 

$string1 = "ImageVeiwer" 

$hex_string2 = { E2 80 AE } 

$string3 = "ma.py" 

$string4 = "tipe exit to end it" 

$string5 = "BTW This is working only on windows" 
 

condition: 

3 of them 

} 

 
rule Python_2 { 

strings: 

$string1 = "ma.exe.manifest" 

 

condition: 

all of them 

} 

 

rule Python_3 { 

strings: 

$string1 = "modules['mails']" 

$string2 = "tedtools" 

$string3 = "thunderbird" 

$string4 = "Drive letter should be a letter between A and Z" 

condition: 

3 of them 

} 

 

rule Python_4 { 

strings: 

$string1 = "x86_64-posix-sjlj" 

$string2 = "tedtools" 

$string3 = "teddumper" 

$string4 = "teddumper.exe.manifest" 

 

condition: 

3 of them 

 

 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

 

Android Malware Overview/Analysis 
 
The FBI identified Android malware used by Rana named optimizer.apk. This Android Package (APK) 
supported several different functionalities that indicated it to be a malware implant for Android devices. 
 

Malware metadata 

Filename Optimizer.apk 

Package Name com.android.providers.optimizer 

and com.android.providers.optimizer-1  

Last 
Modification/ 
Compile Date: 

12/24/2018, 05:46 

 

File Type:  Android Package Kit / Android Application Package (APK) 

File Size: 185.6 KB 

MD5: 426351383DFE8F88A0959A9D5E8C43C7 

SHA1: 0C23F62BA98EBFA2C062C485E5704F193909E421 

SHA256: A1481B251328B50D268B815DEBD614F539039E6E7012C90B66DAEE717712D524 

Entropy: 7.966 

Certificate: 
 

Serial Number: 763faa62 

Valid from: Sun Dec 23 18:47:57 EST 2018 

Until: Mon Sep 25 19:47:57 EDT 2073 

Certificate Fingerprints: 

MD5: 7C:B5:E0:3A:4F:A2:7F:E1:0E:9A:81:A2:66:66:1F:6C 

SHA1: 

C4:D9:9E:F0:CB:CF:CA:B4:0A:B9:BE:4F:5A:68:5A:DC:00:6E:8D:49 

SHA256: 

53:1F:74:0C:51:9A:BD:1B:96:0F:E4:FF:E2:39:E3:DC:23:5C:99:41:D0: 

D1:21:12:65:57:B3:CD:85:43:B0:D0 

  
The APK implant was a variant of Android malware. The implant was coded to communicate with a C2 
Server, saveingone.com (domain saveingone.com previously resolved to the Iranian IP address 

185.165.116.47). The APK implant had information stealing and remote access functionality which 
gained root access on an Android device without the user’s knowledge. The main capabilities include 
retrieving HTTP GET requests from the C2 server (typically updates or commands for the device), obtaining 
device data, compressing and AES-encrypting the collected data, and sending it via HTTP POST requests to 
the malicious C2 server. The APK implant also had permissions to record audio and take photos, using the 
microphone and camera on the compromised device. 
The Optimizer APK implant was decompressed and contained the following folders/files: lib, META-
INF, res, AndroidManifest.xml, classes.dex, and resources.arsc. The 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

AndroidManifest.xml file listed the SDK versions the Optimizer implant required: minimum 8, target 

22, and maximum 23. 
The file classes.dex contained binary Dalvik bytecode, which was originally the Java source code 
compiled to run inside a Dalvik Virtual Machine on an Android device. The file classes.dex was converted to 
Smali language for a more readable format, then converted to Java source code with the open-source tools 
Dex2jar and Androguard. This file defined four packages, 185 classes, 570 methods, and referenced 1,068 
methods once converted to Java source code. 
The APK implant collected detailed device data and sends the data in AES-encrypted zip files to the C2 as 
HTTP POST requests which is covered in the Dynamic Analysis section below. It was evident that the code 
was configured to collect specific device information. The following code snippets display collected device 
data, HTTP requests, and encryption method: 
The package shares, class ai, and method a, or shares .ai.a, comprises code that makes up an HTTP 
POST request that is used by the implant to send obtained device data to the malicious C2 server. The 
package a, class m, method a, or a.m.a, contained a 96-byte string that appeared to be a base64-encoded 
key. Upon further analysis, the Optimizer APK implant did not use the string "JXsItS7…" in a.m.a. The 
a.aj.a and a.al.a methods contained encryption mechanisms using the AES/ECB/PKCS5 padding cipher 

to encrypt and decrypt data contained APK’s res folder files and collected device information. The a.a.a 
method contained mechanisms which used base64-decoding, UTF-8, and the AES cipher in a.aj.a. The 
code also calls the configuration file cng.cn that is located in the APK’s res/raw folder. 

 

The file libOptimizer.so contained within the APK file path \Optimizer\lib\x86\, contained the 
encryption key for the malware’s network communication in the form of a stack string which was manually 
created and stored in package a, class m, and method a (a.m.a). The variables of the key are defined in the 
.so file starting at functions doAll and as.StartService. The "JXsITS7JIWI..." string initially found in 
the same a.m.a method during static analysis is a decoy and is not referenced during runtime. 
  
The file libOptimizer.so also built the filename tmp.tmp, which was originally stored in the APK’s 

res/raw folder. Then the functions fopen and fclose were used to open the file tmp.tmp contents. The 
contents of tmp.tmp appeared to be binary. Both of the files libOptimizer.so and tmp.tmp were identified 
as being loaded onto the device during dynamic analysis. The functionality of the loaded tmp.tmp contents 
was not determined. 
  
Dynamic analysis was conducted on the Optimizer APK implant, including running the implant on an 
emulated Android device and debugging/reverse-engineering. Analysis concluded that the implant’s main 
functionality was to retrieve updates or commands from the C2 saveingone.com through HTTP GET 
requests and to collect device information, which was transmitted to the C2 in AES-encrypted zip files. 
  
Upon initial installation, the Optimizer APK implant did not generate an application (app) icon that was 
visible on the android emulator’s Apps screen. The API Platforms 19, 22, and 26, were used to deploy the 
APK implant onto the emulator device. The App settings for the APK implant did not provide an option to 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

Force Stop or Uninstall the application. The APK implant did not start any services or processes upon 
installation, only after the device was rebooted did the APK start and maintain persistence in the infected 
device. 
  
When the emulator device was rebooted after installation, the Optimizer APK implant app initiated an 
instance of itself on the device with three running processes:  

 Optimizer (com.android.providers.optimizer) 

 Android Core Apps (android.process.acore) 

 Calendar Storage (com.android.providers.calendar) 
and two running services: 

 Optimizer (Started by app) 

 Helper (Started by app) 
 
The device administrative (admin) privileges settings contained an option to give the Optimizer implant the 
ability to, Monitor screen-unlock attempts.  
  
The following steps can be followed on an Android device to detect if the Optimizer implant application was 
running on a device: Settings -> Apps -> Running. The implant sent a Domain Name Service 
(DNS) request to resolve the C2 domain, saveingone.com. Then HTTP GET requests were formed to 
retrieve an unidentified type of data from the malicious C2. Finally, the implant used HTTP POST requests to 
send AES-encrypted zipped data to the C2. The POST requests were coded into a loop and continuously 
collected the device data. 
  
The Optimizer APK implant created several folders on the device and saved the HTTP POST requests contents 
locally. The folders and files can be found on the device image named userdata-qemu.img, at directory 
path: Root ->Data -> com.android.providers.optimizer -> files. The HTTP POSTS 

requests were saved into the upsls folder in this instance. The resource files were also loaded on the 
device, and the libOptimizer.so file mentioned earlier was present on the device at directory path: 
Root ->app-lib -> com.android.providers.optimizer-1. 
    
The configured Optimizer APK implant code used decoys to thwart reverse-engineering of the implant such 
as the "JXsITS7JIWItp…" string stored statically in a.m.a. The decoy string only acts as a place holder to 
store the new 96-byte base64 string "aEpAayM4V..." built in the libOptimizer.so file. Before the encryption 
method begins in a.a.a, the value it calls in a.m.a contains the 96-byte "aEpAayM4V…" string. That 96-
byte string is then base64-decoded to a 72-byte key "hJ@k#8V%}H*&Yds2..." and stored into the variable 1, 
a.m.a,. Only the first 16-bytes of the generated 72-byte key is required AES-decrypt the configuration file 
cng.cn. The cng.cn file contains an additional 72-byte key within which is the "e2&njk%Nsfn&*Ysd…" 
used to AES-decrypt the compressed zip files sent via HTTP POST requests to the malicious C2 server. The key 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

also decrypts a file in the res/raw folder named odr.od, along with other files generated and saved onto 
the Android device by the implant.   
 

Android Malware YARA Rules 
 
The FBI developed the following YARA rules to detect the Android malware’s presence:  
  
rule APK_Optimizer_1 { 
meta: 
description = "Optimizer APK Malware" 
hash1 = "426351383DFE8F88A0959A9D5E8C43C7" /* MD5 */ 
hash2 = "0C23F62BA98EBFA2C062C485E5704F193909E421" /* SHA1 */ 
category = "Android Application Package Malware" 
 

strings: 
$x1 = 

"JXsITS7JIWItpoSkBrf8wz5JVOXgrSCJVoKmYlbSjpmmmIsU3y0zRlIwbWmZhGZ4n5mrN2O

pajXGiYqIypzVMWQkNUbYHpW1" fullword wide ascii 
$x2 = "Contatcts" fullword wide ascii 
$x3 = "cng.cn" fullword wide ascii 
$x4 = "odr.od" fullword wide ascii 
$x5 = "Content-Disposition: form-data; name=\"InputFile\";filename=\"" 

fullword wide ascii 
condition: 
3 of them /* any string in the rule */ 
} 

 
Depot.dat Malware Overview/Analysis 
 

The depot.dat malware had the ability to collect victim screenshots, keylogger information, and other data, 
and then send this data to Rana controlled infrastructure. The malware comprised two components: a 
dropper and an encrypted Microsoft CAB file. The CAB file is named depot.dat and contains four files that 
make up the second stage of the malware. The Dropper decrypts the encrypted CAB file and establishes 
persistence. 

 

Dropper Files 

Filenames: 
installer.exe  

svchost.exe 

MD5 Hash: fcc61b3a0277c47748a185dccccad5d8 

  



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

Depot.dat Files 

Filename: depot.dat 

MD5 Hash: 
4d8e2fdb16877f693d8e90410f90a164 

ce456b20f6cb4d5d74f00d976e2e7a91 

Dropper Details 
 
The dropper decrypted the depot.dat file and established a persistent mechanism for the malware. The 
dropper executed with a password at runtime. The password was a number between 0 and 0x10000 that 
represented a seed. The seed was used to create a 72-byte Blowfish decryption key. Because the malware 
ensures that the seed is less than 0x10000, this limits the options for the generation of a key significantly and 
the potential passwords that could be used.  
In order to persist, the dropper sets LoadAppInit_DLLs in the registry key 

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows to persist Bootmgr.dll 
(extracted from the decrypted depot.dat) and turns off RequireSigned (which ensures that only signed 
DLLs may be run on Windows) so that it can load and run its next stage components. This persistence 
mechanism was obfuscated with a sophisticated XOR routine which used a Pseudo-Random Number 
Generator (PRNG) as the key. 
Once the depot.dat file was extracted and the components deployed, the dropper would delete the 
encrypted depot.dat file. 
 
Depot.dat Details 
 
Once depot.dat was decrypted, four files are extracted from the CAB file:  
 

Contents of CAB File 

Filename MD5 Hash 
Bootmgr.dll 66cb23c223ec4d78d683292d1b928fbf 

bootui.dll 46506fa669ec116da3d967c36eab7ba7 

mlp.dat f3d2c6084f09433a87f248726de288e0 

tfd.log d363ecffbe6a0a62546051fc383399f4 

 

Bootmgr.dll is responsible for starting bootui.dll. Bootmgr.dll is persisted in the registry by the 
dropper. 
 
Bootui.dll opens and deobfuscates the configuration file, mlp.dat, as well as performs the majority of 
the malware’s data collection and packaging functionality. After decrypting the configuration file, 
bootui.dll creates and starts threads to monitor keystrokes and collect screenshots. These files are 
placed into a directory listed in the configuration file (and tfd.log) and end with .tmp. Prior to 
exfiltration, these files are placed in a CAB file and encrypted using the key obtained from the encryption file. 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

 
Mlp.dat is deobfuscated by bootui.dll using a slightly different sophisticated XOR routine from the 
one used by the dropper to obfuscate the persistence mechanism. The configuration file contains the 
directory into which data for exfiltration will be stored, a Blowfish encryption key for victim data, a sleep 
timer, and some other unique data. For these pieces of malware, analysis victim data prior to egress will be 
stored in: C:\Windows\Help\OEM which is the sole contents of tfd.log 
 
Depot.dat Indicators of Compromise 
 

The FBI derived the below signatures to detect the Depot.dat malware's presence: 

 Known Filenames: 
o Dropper: installer.exe, svchost.exe 
o depot.dat 

 Both observed sample contents begin with 2300 but the dropper code would support files starting 
with 2640 or MSCF. Approximate size 59k. 

 Second stage directory paths: 
o C:\Windows\system32\Bootui.dll 

o C:\Windows\system32\Bootmgr.dl 

o C:\Windows\system32\Tfd.log 

o C:\Windows\system32\Mlp.dat 

 Director paths for victim data: 
o C:\Windows\Help\OEM 

o C:\Windows\debug\WIA 

 Victim data: 
o Stored in one of the above paths, named <timestamp>.tmp and begins with 2300. 

 Altered registry keys: 
o SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows, specifically 

LoadAppInit_DLLs to include Bootmgr.dll and RequireSigned to be off 
 
 

Depot.dat YARA Rules 
 
The FBI developed the following YARA rules to detect the Android malware’s presence: 
 
rule Depot_dat_1 { 
meta: 
description = "rules for the dropper" 
strings: 
$format1 = "MSCF" wide ascii 
$format2 = "2640" wide ascii 
$format3 = "2300" wide ascii 
$fnames = "depot.dat" wide ascii nocase 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

$fnames2 = "tfd.log" wide ascii nocase 
$cabinet = "Cabinet.dll" wide ascii nocase 
 

condition: 
all of ($format*) and (1 of ($fnames*)) and $cabinet 
} 
 

rule Depot_dat_2  { 

meta: 

description = "rules for Bootmgr.dll" 
strings: 

$fname = "mlp.dat" wide ascii nocase 

$fname2 = "bootui.dll" wide ascii nocase 

$callnext1 = "BootUI" wide ascii 

$callnext2 = "GetProcAddress" wide ascii 

 

condition: 

all of them 

} 

 

rule Depot_dat_3 { 

meta: 

description = "rules for bootui" 
strings: 

$format1 = "<xzl xnm =" wide ascii nocase 

$format2 = "(...)" wide ascii 

$fname1 = "__????.tmp" wide ascii 

$fname2 = "mlp.dat" wide ascii nocase 

$fname3 = "i.log" wide ascii nocase 

 

condition: 

all of them 

} 

 

rule Depot_dat_4 { 

meta: 

description = "rule for prng" 
strings: 

$s1 = {af 00 2c 15}/*"0x152c00af"*/ 

$s2 = {6d 4e c6 41} /*"0x41c64ed"*/ 

$s3 = {45 69 c9 24 0d 00 00} /* imul r9d, r9d, 0xd24 */ 

$s4 = {69 d2 da 2e 18 00} /* imul edx, edx, 0x182eda */ 

$s5 = {b5 81 4e 1b} /*"0x1b4e81b5"*/ 

 

condition: 

3 of them 

} 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

 

Malware Samples Uploaded to Virus Total 
 
The FBI uploaded at least one representative sample of each malware category to VirusTotal. Specifically, the 
FBI uploaded the following:  
 

VBS Malware 

Filename MD5 Hash 

Urban Development Plan.doc 9f7c280b20d021f0a0984d1ad0aeba41 

  

AutoIt Malware 

Etisalat.exe 486aa8849c173450911f886116f4b5d6 

  

BITS 1.0 Malware 
Birds.exe 91e1793bd5f3f274ddb22b47662cb860  

Splitter.exe 2f01092e9cd49448b0de7da48e545682  

Activorse.exe 0d6d385354584264e2b37ff3a199ea04   

Splitter.exe 8f848b67af0d6ad3dd3419c9d11c28c1   

poweriso.exe 45045fa9d428f29e8a3a988048e3aff1   

  

BITS 2.0 Malware 

final1.exe 43124f6d418b086f3107a8cb708c3d2b 

events.exe 6269e8ae9d86c648c15e41c7d89509ab 

  

Firefox Malware 

1.exe eee655c5522267d63314a0b20162d619  

  

Python Malware 

Al_image of my own_official for 
registrartion_Al_GNP.exe 

de8986682ab25d98448e688506250b94 

Teddumper.exe 50ded657ff5a1c80d736fe3b80beb87f 

  

Android Malware 

Optimizer.apk 426351383DFE8F88A0959A9D5E8C43C7 

  

Depot.dat 

Depot.dat 59c2c1c6451417f054efaee32416c652 

 
 

 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

Best Practices for Network Security and Defense: 
 

 Employ regular updates to applications and the host operating system to ensure protection against 
known vulnerabilities. 

 Establish, and backup offline, a "known good" version of the relevant server and a regular change-
management policy to enable monitoring for alterations to servable content with a file integrity 
system. 

 Employ user input validation to restrict local and remote file inclusion vulnerabilities. 

 Implement a least-privileges policy on the Webserver to: 
o Reduce adversaries’ ability to escalate privileges or pivot laterally to other hosts. 
o Control creation and execution of files in particular directories. 

 If not already present, consider deploying a demilitarized zone (DMZ) between the Web-facing 
systems and corporate network. Limiting the interaction and logging traffic between the two provides 
a method to identify possible malicious activity. 

 Ensure a secure configuration of Webservers. All unnecessary services and ports should be disabled 
or blocked. All necessary services and ports should be restricted where feasible. This can include 
whitelisting or blocking external access to administration panels and not using default login 
credentials. 

 Use a reverse proxy or alternative service to restrict accessible URL paths to known legitimate ones. 

 Conduct regular system and application vulnerability scans to establish areas of risk. While this 
method does not protect against zero day attacks, it will highlight possible areas of concern. 

 Deploy a Web application firewall and conduct regular virus signature checks, application fuzzing, 
code reviews, and server network analysis. 

 
Reporting Notice 

The FBI encourages recipients of this document to report information concerning suspicious or criminal 
activity to their local FBI field office. Field office contacts can be identified at www.fbi.gov/contact-us/field-
offices. When available, each report submitted should include the date, time, location, type of activity, 
number of people, and type of equipment used for the activity, the name of the submitting company or 
organization, and a designated point of contact.  
 

Administrative Note 
 
This product is marked TLP:WHITE. Subject to standard copyright rules, TLP:WHITE information may be 
distributed without restriction. 
 
 

 



TLP:WHITE 
 
 
 
 
 
 

TLP:WHITE 

 

 

Your Feedback on the Value of this Product Is Critical 

Was this product of value to your organization?  Was the content clear and concise?  

Your comments are very important to us and can be submitted anonymously.  Please 

take a moment to complete the survey at the link below.  Feedback should be specific to 

your experience with our written products to enable the FBI to make quick and 

continuous improvements to such products.  Feedback may be submitted online here:  

https://www.ic3.gov/PIFSurvey 

 


